

EMship+

An Integrated Framework for Conceptual Design Stage Structural Optimisation of RoRo & RoPax Vessels

Master Thesis EMSHIP WEEK 2018, La Spezia

: Dr.-Ing Thomas Lindemann, University of Rostock Supervisor : Dr.-Ing Stefan Harries, FRIENDSHIP SYSTEMS AG : Mr. Abbas Bayatfar, University of Liege

Shabeeb Fasil Ummathur

EMSHIP 7th Cohort (2016-2018)

Motivation & Scope

•Conceptual Design Phase :

- Rule based Structural analysis with emphasis on reducing lightship weight

•Structural Optimisation of midship section : mainly involve rule based determination of optimum scantlings for main transverse frames, plates, longitudinal stiffeners etc.

- Plates, longitudinal stiffeners (BV MARS Loop) by University of Liege
- Main transverse frames (BV STEEL Loop) Within the scope of Thesis

 To establish Optimisation loop integrating different tools utilizing Response Surface Methodology

HOLISHIP (HOLIstic optimisation of SHIP design and operation for life-cycle) - Overview

Source :- http://www.holiship.eu/

Workflow - Different Steps Involved

RoRo STEEL Model for Main Transverse Frame

Von mises Stress Distribution- From STEEL tool

STEEL - modeFRONTIER Loop For RoRo Hull

Defining Objective Function and Constraints for Optimization

35	8.79	297
36	3.19	47
43	3.89	61
44	2.69	42
45	3.89	57
46	2.69	40
47	3.89	57
48	1.12	17
49	3.00	44
50	1.12	17
51	3.00	44
[Total	[Weight]	4476

•Criteria for the Von mises Stress (σ_{VM}) - Yield Check $\sigma_{VM} \le 290 \text{ MPa}$ (BV Rules NR 467, Pt.B, Ch7, App.1)

•Criteria for Geometrical Properties (BV Rules NR 467, Pt B, Ch4, Sec3, [4])

[Beam	_Stress]	Beam D	etailed	Stress (I	N/mm2)									
*N°	Sig_1	Tau_1	Sig_2	Tau_2	Sig_3	Tau_3	Sig_4	Tau_4	Sig_5	Tau_5	Sig_6	Tau_6	Sig_7	Tau_7
1	-2	0	-2	7	-2	0	0	7	2	0	2	7	2	0
1	-1	0	-1	0	-1	0	0	0	1	0	1	0	1	0
1	-2	0	-2	8	-2	0	0	8	2	0	2	7	2	0
2	-8	0	-8	35	-8	0	0	39	9	0	9	35	9	0
2	5	0	4	0	5	0	0	0	-5	0	-5	0	-5	0
2	-9	0	-8	36	-9	0	0	39	10	0	9	35	10	0
3	-8	0	-8	36	-8	0	0	39	10	0	9	35	10	0
3	5	0	4	0	5	0	0	0	-5	0	-5	0	-5	0
3	-8	0	-8	36	-8	0	0	39	9	0	9	35	9	0
4	-2	0	-2	8	-2	0	0	8	2	0	2	7	2	0
4	-1	0	-1	0	-1	0	0	0	2	0	1	0	2	0
4	-2	0	-2	7	-2	0	0	8	2	0	2	7	2	0
5	-2	0	-2	49	-2	0	0	54	2	0	2	48	2	0
5	23	0	23	3	24	0	0	4	-26	0	-26	3	-27	0
5	-8	0	-7	49	-5	0	0	53	9	0	8	48	6	0
6	- 39	0	-38	22	-39	0	0	46	16	0	13	43	10	0
6	-99	0	-97	29	-99	0	0	61	35	0	32	58	32	0

History Chart-Weight with 8 Variables from STEELmodeFRONTIER loop : RoRo Hull

Establishing Surrogate Models using Response Surface Method (RSM)

•Response Surface Methodology

•Applicability

RSM With R Tool & CAESES – Using Polynomial Quadratic Surrogate Model

Weight, W = 4205.65 -3.864* x_1 + 5.874* x_1^2 +12.461* $x_1 x_2$ + 6.480* $x_1 x_3$ - 0.5429* $x_1 x_4$ + 0.1929* x_2 + 0.0003* x_2^2 + 0.4970* x_3 + 0.0031* x_3^2 + 1.798* $x_3 x_4$ + 0.1127 x_4 + 0.0007* x_4^2

$$\boldsymbol{x}_1\!=\!\boldsymbol{H}_W$$
 , $\boldsymbol{x}_2\!=\!\boldsymbol{T}_W$, $\boldsymbol{x}_3\!=\!\boldsymbol{B}_{f_+}\boldsymbol{x}_4$ = \boldsymbol{T}_f

Relative difference as low as .002%.

Traditio et Innovatio

- •Using neuralnet Package available in 'R'
- The percentage of relative error was found to be within acceptable limits (maximum around 0.2 %).

Structural & Load Modeling of RoPax Hull for WP7 Application

Basic Vessel Data – RoPax Hull							
Scantling Length	162.845 m						
B _{mld}	27.6 m						
Scantling Draft, T	7.1 m						
Material of Construction	Steel AH36						

•Load cases a ,b for Upright conditions & Load cases c ,d for Inclined loading conditions

- •Only local loads are considered as per the BV Class rules applicable.
- •Sea Pressure loads are acting on the outer shell
- •Wheeled cargo are placed at Deck1,Deck3& Deck 4
- •Passenger spaces at Deck 6
- •Load Case a+ represent one of the critical load cases.

Stress Distribution : RoPax Hull

STEEL-CASES Loop for RoPax Hull : WP7 Application

+	?	Input Geometry				Input Files	0 🖵 🕇
					-		
					8	runR5.bat	
					8	STEEL_MODEL_TO_ANALYZE.stw	
-	6	Desult Files	Run	ner		Desult Values	0 1
-		Result files	-			Kesuit values	ΨŦ
					8	STEEL_MODEL_TO_ANALYZE_1.txt	
					8	vonmisses.txt	

Variation of Weight - RoPax hull

Coupling STEEL- CAESES Loop with RoPax Parametric Hull

Parameterization of Loads in CAESES

Туре	Name	Quick Find (Ctrl+F)
		baseline
FScope	\triangleright	01_geometryRemodeling
FScope	\triangleright	02_hydrostatics
FScope	⊳	03_panelMesh
FScope	\triangleright	04_panelMeshBelowWaterline
FScope	⊳	05_ropaxdemoForComparison
FScope	\triangleright	06_FincantieriInitialModel
FScope		BV_STEEL_Loop
FScope		AttachedPlate_Scantlings
FScope		Loads
FScope		IcoadCase_aPlus
FScope		SeaPressureLoads
FScope		Load_SWPressure
FScope		Load_WavePressure
FParameter		Load_Bottom
FScope		WheeledLoads
FParameter		C 11
FParameter		📐 h_pm
FParameter		C_Wave_pm
FParameter		Density
FParameter		s g
FParameter		h1_pm
FParameter		NavCoeff_n
FParameter		WebFrameSpacing
FScope		Nodes
FScope		Scantlings_dv
FScope	\triangleright	STEEL_Frame
FFeature::mainfr	+	F f1
FParameter		eval_VMStress
FParameter		eval_Weight

Traditio et Innovatio

Design Variables

	DOE	Design Engine		
Chosen Type	DAKOTA	DAKOTA Global		
	Sensitivity Analysis	Optimisation		
Total No. of	~.	500		
Iterations				
Design Variable	Descri	ption	Min. Value	Max. Value
Hw_Deck4	Web Height of Dec	ck4 Beam section	0.550 m	0,850 m
Tw_Deck4	Web Thickness of D	eck4 Beam Section	8 mm	12 mm
Bf_Deck4	Flange Width of De	ck4 Beam Section	0.200 m	0.400 m
Tf_Deck4	Flange Thickness of I	Deck4 Beam Section	15 mm	25 mm
Hw_Deck3	Web Height of Dec	ck3 Beam section	0.550 m	0,850 m
Tw_Deck3	Web Thickness of Deck3 Beam Section		8 mm	12 mm
Bf_Deck3	Flange Width of De	Flange Width of Deck3 Beam Section		0.400 m
Tf_Deck3	Flange Thickness of I	Flange Thickness of Deck3 Beam Section		25 mm
L _{PP}	Length b/w Pe	Length b/w Perpendiculars		180
L _{cb}	Long. centre of buoy	Long. centre of buoyancy (in % of L _{PP})		0.47
В	Breadth		27,6	30,6
Draft	Design draft		6,5	7,1
Height Factor	Scale factor	Scale factor for height		1.02
C _B	Block Co	efficient	0.56	0.58
C _M	Midship section	on coefficient	0.965	0.985

Traditio et Innovatio

Results from Integrated Loop

L_{PP} (m) x Weight (Tonnes/100)

Summary

•Structural weight can be significantly reduced for the entire vessel if optimum scantlings are chosen – Could be useful in the Conceptual design phase to save lightship weight.

•RSM - a reliable solution to replace existing optimization loops in later stages when more tools, methods or design components will need to be integrated together.

•Integrated Optimization loops increase design flexibility during conceptual phase

Recommendations for Future Work

•BV MARS can be integrated with to enable complete structural optimisation of midship section. Global loads can be considered as well.

•When MARS, STEEL loops are coupled, combined loop may be run as inner loop within the parametric hull loop.